[1]汪保健,邱勇斌,张能军,等.杉木人工林阔叶化改造对林分碳密度的影响[J].浙江林业科技,2024,44(02):68-73.[doi:10.3969/j.issn.1001-3776.2024.02.010]
 WANG Baojian,QIU Yongbin,ZHANG Nengjun,et al.Effect of Transforming Pure Cunninghamia lanceolate Plantation to mixed Forest with Broad-leaf Tree Species on Organic Carbon Density[J].Journal of Zhejiang Forestry Science and Technology,2024,44(02):68-73.[doi:10.3969/j.issn.1001-3776.2024.02.010]
点击复制

杉木人工林阔叶化改造对林分碳密度的影响()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
44
期数:
2024年02期
页码:
68-73
栏目:
出版日期:
2024-03-29

文章信息/Info

Title:
Effect of Transforming Pure Cunninghamia lanceolate Plantation to mixed Forest with Broad-leaf Tree Species on Organic Carbon Density
文章编号:
1001-3776(2024)02-0068-06
作者:
汪保健邱勇斌张能军郑文华汪秀玲
开化县林场,浙江 开化 324300
Author(s):
WANG BaojianQIU YongbinZHANG NengjunZHENG WenhuaWANG Xiuling
Kaihua Forest Farm of Zhejiang, Kaihua 324300, China
关键词:
杉木阔叶树混交林碳密度
Keywords:
Cunninghamia lanceolata broad leaf tree species mixed forest organic carbon density
分类号:
S756.5
DOI:
10.3969/j.issn.1001-3776.2024.02.010
文献标志码:
A
摘要:
杉木Cunninghamialanceolata人工林连栽导致生产力下降,将杉木二代林改造为杉阔混交林对提高林分生产力和碳汇能力具有重要意义。本文在杉木二代林内分别引入光皮桦Betulaluminifera、木荷Schimasuperba和厚朴Magnoliaofficinalis,构建杉阔混交林,分析了各林分乔木层、林下植被层、凋落物层和土壤层有机碳密度变化。结果表明:杉木+木荷、杉木+厚朴混交林乔木层碳密度与杉木纯林接近,但杉木+光皮桦比杉木纯林乔木层碳密度减少了25.8%。3种杉阔混交林与杉木纯林之间林下植被碳密度没有差异,但凋落物碳密度均低于杉木纯林。杉木+光皮桦、杉木+木荷和杉木+厚朴混交林0~50cm土层土壤有机碳密度分别比杉木纯林增加了5.9%、8.6%和21.7%。相对于杉木纯林,杉木+木荷和杉木+厚朴混交林林分总碳密度分别增加了5.7%和15.3%,而杉木+光皮桦林林分总碳密度则减少了6.1%。因此,树种组成显著影响杉阔混交林林分碳密度及其分配特征,选择适宜的树种进行杉木二代林阔叶化改造是提高林分固碳潜力的关键。
Abstract:
In Febuary 2007, transformation was carried out on cutting area of pure the first generation of Cunninghamia lanceolata plantation in Kaihua, Zhejiang Province. Afforestations were implemented on different sample plots namely of pure C. lanceolata suckers (CK), 2-year container seedlings of Betula luminifera, Schima superba and Houpoea officinalis with C. lanceolata suckers. In November 2022, investigation was made on different sample plots, with DBH, height and stand density. Biomass of sample trees in each plots, understorey vegetation was determined and soil organic carbon and soil bulk density was detected. The results showed that the organic carbon density of arbor layer in C. lanceolata suckers+S. superba and C. lanceolata suckers+H. officinalis was close to that in the control, but that in C. lanceolata suckers+B. luminifera was 25.8% lower than that in the control. There was no difference of organic carbon density of understory vegetation between the three mixed plantations and the control, but the organic carbon density of litter was lower than that of the control. The soil organic carbon density in the 0-50 cm soil layer of the three mixed plantations was 5.9%, 8.6% and 21.7% higher than that of the control. Compared with the control, the total organic carbon density of mixed C. lanceolata suckers +S. superba and C. lanceolata suckers + M. officinalis plantations increased by 5.7% and 15.3%, while that of C. lanceolata suckers+B . luminifera plantation decreased by 6.1%.

参考文献/References:

[1] 国家林业和草原局. 中国森林资源报告[M]. 北京:中国林业出版社,2019:28-29.
[2] 盛炜彤. 关于我国人工林长期生产力的保持[J]. 林业科学研究,2018,31(1):1-14.
[3] 夏丽丹,于姣妲,邓玲玲,等. 杉木人工林地力衰退研究进展[J]. 世界林业研究,2018,31(2):37-42.
[4] 郭佳欢,孙杰杰,冯会丽,等. 杉木人工林土壤肥力质量的演变趋势及维持措施的研究进展[J]. 浙江农林大学学报,2020,37(4):801-809.
[5] 李婷婷,吴水荣,王林龙,等. 国内外混交林研究进展[J]. 世界林业研究,2022,35(5):42-48.
[6] FENG YUHAO,SCHMID BERNHARD,LOREAU MICHEL,et al. Multispecies forest plantations outyield monocultures across a broad range of conditions[J]. Science,2022,376:865-868.
[7] 戴俊,陈琴,陈代喜,等. 杉木与阔叶树混交林初期生长效应分析[J]. 广西林业科学,2021,50(1):18-21.
[8] 张莉. 杉木-厚朴人工混交林与杉木纯林生物量对比[J]. 安徽农学通报,2019,25(9):55-56.
[9] 何善飞. 杉木、木荷纯林及其混交林生长状况和病虫害调查分析[J]. 南方农业,2022,16(18):82-84.
[10] HUANG Y,CHEN Y,CASTRO-IZAGUIRRE N,et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment[J]. Science,2018,362(6410):80-83.
[11] CHEN S,WANG W,XU W,et al. Plant diversity enhances productivity and soil carbon storage[J]. Proc Nat Acad Sci,2018,115(16):4027-4032.
[12] FINEGAN B,PE?A-CLAROS M,OLIVEIRA A,et al. Does functional trait diversity predict above-ground biomass and productivity of tropical forests? testing three alternative hypotheses[J]. J Ecol,2015,103:191 ? 201.
[13] 张骏,葛滢,江波,等. 浙江省杉木生态公益林碳储量效益分析[J]. 林业科学,2010(6):22-26.
[14] 唐学君,肖舜祯,王伟峰,等. 中亚热带典型杉阔混交林碳储量分配特征[J]. 地域研究与开发,2019,38(4):111-114,121.
[15] 鲍士旦. 土壤农化分析:第3版[M]. 北京:中国农业出版社:2000:30-32.
[16] 廖祥明. 杉木阔叶化改造对生态系统碳储量的影响[J]. 绿色科技,2021,23(24):181-184,187.
[17] 胡冬冬,唐丹,王文欢,等. 人工林林下植被演替及其人为影响因子[J]. 山西农业科学,2018,46(3):471-475.
[18] 佘婷,田野. 森林生态系统凋落物多样性对分解过程和土壤微生物特性影响研究进展[J]. 生态科学,2020,39(1):213-223.
[19] 张悦,张艺凡,马怡波,等. 森林生态系统凋落物分解影响因素研究进展[J]. 环境生态学,2023,5(4):45-56.
[20] 蒋静俭,李子睿,牛明月,等. 浙江省国有林场森林植被固碳释氧服务功能价值评估[J]. 林业资源管理,2022(S1):66-71.

相似文献/References:

[1]倪荣新,宋其岩,吴英俊,等.木荷生物防火林带与杉木林可燃物数量比较研究[J].浙江林业科技,2015,35(01):45.
[2]何贵平,林阳峰,程亚平,等.杉木无性系主要经济性状遗传变异和无性系选择[J].浙江林业科技,2015,35(01):65.
[3]刘跃钧,马海泉,陈天华,等.不同抚育措施对杉木大径材培育效果的影响[J].浙江林业科技,2015,35(01):72.
[4]牛帅红,王书强,沈道海,等.杉木集成薄木漂白工艺研究[J].浙江林业科技,2015,35(03):68.
[5]周红敏,彭 辉,柳新红*,等.萌生杉木林经营后林分空间结构变化[J].浙江林业科技,2015,35(04):41.
 [J].Journal of Zhejiang Forestry Science and Technology,2015,35(02):41.
[6]张 骏,葛 滢,吴初平,等.封山育林对不同发育阶段杉木林植物多样性的影响[J].浙江林业科技,2015,35(05):11.
 ZHANG Jun,GE Ying,WU Chu-ping,et al.Influences of Conservation for Regeneration on Plant Diversity of Ecological Cunninghamia lanceolata Forest at Different Development Stage in Zhejiang[J].Journal of Zhejiang Forestry Science and Technology,2015,35(02):11.
[7]方贵荣,邱湧斌,徐金良,等.不同无性系、不同规格杉木扦插苗造林效果研究[J].浙江林业科技,2016,36(02):68.
 FANG Gui-rong,QIU Yong-bin,XU Jin-liang,et al.Growth of Cunninghamia lanceolata Cuttings with Different Clones and Specifications[J].Journal of Zhejiang Forestry Science and Technology,2016,36(02):68.
[8]唐隆校,潘建华,赖根伟.施肥与间伐对杉木大径材培育的影响[J].浙江林业科技,2016,36(03):56.
 TANG Long-xiao,PAN Jian-hua,LAI Gen-wei.Effect of Thinning and Fertilization on Increment in DBH and Volume of Cunninghamia lanceolata Plantation[J].Journal of Zhejiang Forestry Science and Technology,2016,36(02):56.
[9]翁春媚,齐明*,王海蓉,等.杉木中等位酶与早期生长性状间的相关研究[J].浙江林业科技,2015,35(06):45.
 WENG Chun-mei,QI Ming*,WANG Hai-rong,et al.Correlation between Allozyme and Early Growth Traits inCunninghamia lanceolata[J].Journal of Zhejiang Forestry Science and Technology,2015,35(02):45.
[10]徐永兴.杉木-深山含笑混交林及其纯林乔木层的净生产力研究[J].浙江林业科技,2017,37(01):47.[doi:10.3969/j.issn.1001-3776.2017.01.008]
 XU Yong-xing.Net Productivity of Cunninghamia lanceolata and Michelia maudiae in Mixed and Pure Stand[J].Journal of Zhejiang Forestry Science and Technology,2017,37(02):47.[doi:10.3969/j.issn.1001-3776.2017.01.008]

备注/Memo

备注/Memo:
收稿日期:2023-07-14;修回日期:2024-01-18
作者简介:汪保健,林业工程师,从事森林经营等方面研究;E-mail:452162035qq.com。
通信作者:汪秀玲,林业工程师,从事森林经营等方面研究;E-mail:zjkhlcwxl@163.com。
更新日期/Last Update: 2024-04-10