[1]郭婷婷,黄玉苹,钱桦,等.杭州环西湖公园绿地典型人工植物群落碳收支平衡分析[J].浙江林业科技,2023,43(06):82-92.[doi:10.3969/j.issn.1001-3776.2023.06.011]
 GUO Tingting,HUANG Yuping,QIAN Hua,et al.Carbon Budget of Typical Artificial Plant Communities the Parks around the West Lake in Hangzhou[J].Journal of Zhejiang Forestry Science and Technology,2023,43(06):82-92.[doi:10.3969/j.issn.1001-3776.2023.06.011]
点击复制

杭州环西湖公园绿地典型人工植物群落碳收支平衡分析()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
43
期数:
2023年06期
页码:
82-92
栏目:
出版日期:
2023-12-01

文章信息/Info

Title:
Carbon Budget of Typical Artificial Plant Communities the Parks around the West Lake in Hangzhou
文章编号:
1001-3776(2023)06-0082-011
作者:
郭婷婷1黄玉苹2钱桦3邵锋1王冰玉1傅东示1章银柯4
1.浙江农林大学 风景园林与建筑学院,浙江 杭州 311300;2.杭州八林景观建设有限公司,浙江 杭州 310024;3.杭州市园林绿化发展中心,浙江 杭州 310002;4.杭州植物园,浙江 杭州 310013
Author(s):
GUO Tingting1HUANG Yuping2QIAN Hua3SHAO Feng1WANG Bingyu1FU Dongshi1ZHANG Yinke4
1.School of Landscape Architecture, Zhejiang A & F University, Hangzhou 311300, China;2.Hangzhou Balin Landscape Construction Co., LTD, Hangzhou 310024, China;3.Hangzhou Garden Development Center of Zhejiang, Hangzhou 310002, China;4.Hangzhou Botanical Garden of Zhejiang, Hangzhou 310013, China
关键词:
植物群落碳收支水平郁闭度栽植密度乔灌木比例
Keywords:
plant community carbon budget canopy density plantation density ratio of tree and shrub
分类号:
S718.55
DOI:
10.3969/j.issn.1001-3776.2023.06.011
文献标志码:
A
摘要:
为揭示植物群落结构对碳收支水平的影响,本研究选取5个杭州环西湖公园绿地为研究地,以公园绿地内典型的30个植物群落为研究对象,通过i-Tree软件和生命周期评价法分别估算植物群落年固碳量和年碳排放量,分析养护管理方式和植物群落结构对碳收支水平的影响,探究郁闭度、栽植密度和乔灌木比例与植物群落碳收支水平的关系。结果表明:各植物群落的平均碳收支量为3209.40kgC·a-1·hm-2,其中,平均固碳量为11209.87kgC·a-1·hm-2,平均碳排放量为8000.47kgC·a-1·hm-2;植物群落郁闭度保持在0.50~0.75、栽植密度控制在355~750株·hm-2、乔灌木比例为0.25~0.50时,植物群落的碳收支量最大;植物群落碳收支量均随着郁闭度、栽植密度、乔灌木比例的增加呈现出先增加后减少的趋势,在某一等级达到峰值,随后下降。以上研究结果表明,通过优化植物群落种植结构,以适当的郁闭度、群落栽植密度及乔灌木比例设计植物群落,推动养护管理绿色低碳化,达到增加固碳量、降低碳排放量的要求,以提高植物群落碳收支水平。
Abstract:
Thirty typical plant communities were selected in 5 parks around the West Lake in Hangzhou, Zhejiang province. The annual carbon sequestration and carbon emissions of these communities were estimated by i-Tree software and life cycle assessment method. The effects of tending and management, and plant community structure on carbon budget were analyzed, and the relationship among canopy density, plantation density, and ratio of tree and shrub with the carbon budget of plant communities were explored. The result demonstrated that the average carbon budget of sampled communities was 3 209.40 kgC·a-1/ha, with an average carbon sequestration of 11 209.87 kgC·a-1/ha and average carbon emission of 8 000.47 kgC·a-1/ha. It showed that the carbon budget of the plant community could top the largest with the canopy density of 0.50-0.75, plantation density of 355-750 tree/ha, and the ratio of tree and shrub of 0.25-0.50. It concluded that the carbon budget of plant communities showed a trend of increasing first and then decreasing with the increase of canopy density, plantation density, and ratio of tree and shrub.

参考文献/References:

[1] XI C,DING J,WANG J,et al. Nature-based solution of greenery configuration design by comprehensive benefit evaluation of microclimate environment and carbon sequestration[J]. Energ Build,2022,270:112264.
[2] IDEM R,TONTIWACHWUTHIKUL P. Preface for the special issue on the capture of carbon dioxide from industrial sources: Technological developments and future opportunities[J]. Ind Eng Chem Res,2006,45(8):2413.
[3] JO H K,KIM J Y,PARK H M. Carbon reduction and planning strategies for urban parks in Seoul[J]. Urban For Urban Green, 2019, 41:48-54.
[4] GRIMM N B,FAETH S H,GOLUBIEWSKI N E,et al. Global change and the ecology of cities[J]. Science,2008,319(5864):756-760.
[5] MITCHELL M G E,JOHANSEN K,MARON M,et al. Identification of fine scale and landscape scale drivers of urban aboveground carbon stocks using high-resolution modeling and mapping[J]. Sci Total Environ,2018,622-623:57-70.
[6] 王万军,赵林森. 昆明市翠湖公园碳储量及碳汇效益分析[J]. 北方园艺,2012(8):97-99.
[7] 王敏,宋昊洋. 影响碳中和的城市绿地空间特征与精细化管控实施框架[J]. 风景园林,2022,29(5):17-23.
[8] JO H K,KIM J Y,PARK H M. Carbon and PM2.5 reduction and design guidelines for street trees in Korea[J]. Sustainability,2020,12(24):10414.
[9] 吴珊珊,张赟齐,王陆军,等. 合肥环城公园不同群落类型碳储量[J]. 南方农业(园林花卉版),2010,4(4):44-48.
[10] ARILUOMA M,OTTELIN J,HAUTAM?KI R,et al. Carbon sequestration and storage potential of urban green in residential yards: A case study from Helsinki[J]. Urban For Urban Green,2021,57:126939.
[11] 刘利. 基于i-Tree Eco模型城市绿地的生态效益分析[D]. 郑州:华北水利水电大学,2022.
[12] 施健健,蔡建国,刘朋朋,等. 杭州花港观鱼公园森林固碳效益评估[J]. 浙江农林大学学报, 2018,35(5):829-835.
[13] 刘瀚洋,陈步金,赵兵. 基于生命周期(LCA)的园林碳排放评价初探[J]. 中国城市林业, 2013,11(6):11-14.
[14] JO H K,MCPHERSON G E. Carbon storage and flux in urban residential greenspace[J]. J Environ Manag,1995,45(2): 109-133.
[15] OLIVER-SOL? J,N??EZ M,GABARRELL X,et al. Service sector metabolism: Accounting for energy impacts of the Montjuic Urban Park in Barcelona[J]. J Ind Ecol,2007,11(2): 83-98.
[16] 萧箫,陈彤,郑中华,等. 上海公园绿化养护碳排放量计算研究[J]. 上海交通大学学报(农业科学版),2013,31(1):67-71.
[17] 冀媛媛,罗杰威. 景观全生命周期日常使用和维护阶段碳排放影响因素研究[J]. 风景园林,2016,23(9):121-126.
[18] 龙婷,陈杰,杨蓝,等. 极小种群东北红豆杉所在群落特征及其环境解释[J]. 植物科学学报,2020,38(1):77-87.
[19] IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories[M]. Japan:IGES,2006:327-329.
[20] 国家统计局能源统计司. 2020中国能源统计年鉴[M]. 北京:中国统计出版社,2020:355-356.
[21] 张令玉. 生物低碳农业[M]. 北京:中国经济出版社,2010:31-32.
[22] 许秀成. 减排、低碳时代的肥料—从低碳经济出发构建我国肥料新体系[J]. 磷肥与复肥,2010,25(3):1-3.
[23] 刘洪涛,陈同斌,郑国砥,等. 有机肥与化肥的生产能耗、投入成本和环境效益比较分析—以污泥堆肥生产有机肥为例[J]. 生态环境学报,2010,19(4):1000-1003.
[24] 冀媛媛,罗杰威,王婷,等. 基于低碳理念的景观全生命周期碳源和碳汇量化探究—以天津仕林苑居住区为例[J]. 中国园林,2020, 36(8): 68-72.
[25] 张婉茹. 基于碳汇功能的植物群落优化研究[D]. 沈阳:沈阳建筑大学,2020.
[26] 徐飞,刘为华,任文玲,等. 上海城市森林群落结构对固碳能力的影响[J]. 生态学杂志,2010,29(3):439-447.
[27] 何晶. 基于全生命周期的城市绿地乔木群落碳收支研究[D]. 武汉:华中农业大学,2017.
[28] 依兰,王洪成. 城市公园植物群落的固碳效益核算及其优化探讨[J]. 景观设计,2019(3):36-43.
[29] 张颖. 建筑垃圾堆山公园植物群落固碳效益量化与优化研究[D]. 天津:天津大学,2019.
[30] 黄柳菁,张颖,邓一荣, 等. 城市绿地的碳足迹核算和评估—以广州市为例[J]. 林业资源管理,2017(2):65-73.
[31] 张颖. 基于生命周期法的城市绿地优势种碳收支研究[D]. 天津:天津师范大学,2022.
[32] STROHBACH M W,ARNOLD E,HAASE D. The carbon footprint of urban green space: A life cycle approach[J]. Landscape Urban Plan, 2012,104(2):220-229.

相似文献/References:

[1]陈伟杰,刘日林,梅中海,等.望东垟高山湿地群落基本特征分析[J].浙江林业科技,2015,35(02):1.
[2]王坚娅,张汝忠,张骏,等.椒江源头生态公益林区植物多样性的地统计学分析[J].浙江林业科技,2015,35(01):8.
[3]吴光洪,敬婧,吴双跃,等.南暖温带城市公园植物群落结构研究 ——以青岛、徐州为例[J].浙江林业科技,2016,36(03):36.
 WU Guang-hong,JING Jing,WU Shuang-yue,et al.Study on Plant Community Structure in Urban Parks in Qingdao and Xuzhou[J].Journal of Zhejiang Forestry Science and Technology,2016,36(06):36.
[4]倪绍兔,蒋跃平*,赵品龙,等.西溪湿地植物群落时空变化研究[J].浙江林业科技,2015,35(06):9.
 NI Shao-tu,JIANG Yue-ping*,ZHAO Pin-long,et al.Spatiotemporal Variation of Plant Communities at Xixi Wetland[J].Journal of Zhejiang Forestry Science and Technology,2015,35(06):9.
[5]吉小敏,梁继业.塔里木河上游荒漠与绿洲过渡带植物群落组成与多样性特征分析[J].浙江林业科技,2017,37(05):16.[doi:10.3969/j.issn.1001-3776.2017.05.003]
 JI Xiao-min,LIANG Ji-ye.Analysis on Species Composition and Diversity of Plant Communities in Ecotone of Desert and Oasis in the Upper Reaches of Tarim River[J].Journal of Zhejiang Forestry Science and Technology,2017,37(06):16.[doi:10.3969/j.issn.1001-3776.2017.05.003]
[6]张天然,丁高峰,楼一蕾,等.不同植物群落内PM2.5 及重金属元素滞纳季相特征[J].浙江林业科技,2021,41(04):32.[doi:10.3969/j.issn.1001-3776.2021.04.005]
 ZHANG Tian-ran,DING Gao-feng,LOU Yi-lei,et al.Mass Concentration of PM2.5 and Heavy Metal Content in Different Plant Communities[J].Journal of Zhejiang Forestry Science and Technology,2021,41(06):32.[doi:10.3969/j.issn.1001-3776.2021.04.005]

备注/Memo

备注/Memo:
收稿日期:2023-06-05;修回日期:2023-10-09
基金项目:杭州西湖风景名胜区科技发展计划项目“碳达峰、碳中和背景下的杭州西湖西溪景区绿地碳汇功能研究”(2022-001)
作者简介:郭婷婷,硕士,从事园林绿地生态效益评价研究;E-mail: guott191@outlook.com。
通信作者:章银柯,正高级工程师,博士,从事园林绿地生态效益评价研究;E-mail: zyk1524@163.com。
更新日期/Last Update: 2023-12-20