[1]徐千瑞,周星怡,李贺鹏,等.土壤盐胁迫对日本荚蒾生理生化特性的影响[J].浙江林业科技,2022,42(01):24-30.
 XU Qian-rui,ZHOU Xing-yi,LI He-peng,et al.Effect of Different Salt Stress on Physiological and Biochemical Properties of Viburnum japonicum[J].Journal of Zhejiang Forestry Science and Technology,2022,42(01):24-30.
点击复制

土壤盐胁迫对日本荚蒾生理生化特性的影响()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
42
期数:
2022年01期
页码:
24-30
栏目:
出版日期:
2022-01-15

文章信息/Info

Title:
Effect of Different Salt Stress on Physiological and Biochemical Properties of Viburnum japonicum
文章编号:
1001-3776(2022)01-0024-07
作者:
徐千瑞 1周星怡2李贺鹏3岳春雷3
(1. 浙江农林大学林业与生物技术学院,浙江杭州 318020;2. 南京农业大学生命科学学院,江苏南京 210095; 3. 浙江省林业科学研究院,浙江杭州 310023)
Author(s):
XU Qian-rui1ZHOU Xing-yi2LI He-peng3YUE Chun-lei3
(1. School of Forestry and Bio-technology, Zhejiang A & F University, Hangzhou 311300, China; 2. School of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; 3. Zhejiang Academy of Forestry, Hangzhou 310023, China)
关键词:
日本荚蒾盐胁迫耐盐性生理生化特性
Keywords:
Viburnum japonicum salt stress salt tolerance physiological and biochemical property
分类号:
S794.4
文献标志码:
A
摘要:
为评价日本荚蒾Viburnum japonicum 的耐盐性,以日本荚蒾3 年生实生苗为试验材料进行盆栽盐胁迫试验, 设置土壤含盐量分别为0(CK)、0.15%、0.30%、0.45%、0.60%和0.75%共6 个浓度的土壤盐分处理,分别在盐 胁迫10 d、20 d、30 d、40 d 时测定植株叶片的丙二醛(MDA)含量、抗氧化酶活性及渗透调节物质含量等生理 生化指标。结果表明,植株叶片的MDA 含量、可溶性蛋白含量及可溶性糖含量与土壤含盐量成正比;随着盐胁 迫时间的延长,0.15%土壤含盐量处理组植株叶片的超氧化物歧化酶(SOD)活性呈上升趋势,CK 与其他处理组 植株叶片的SOD 活性均呈先上升后下降趋势;除0.60%及0.75%含盐量处理组外,其余各处理组植株叶片的过氧 化物酶(POD)活性均高于CK 的,但随着胁迫的持续进行,0.45%土壤含盐量处理组植株叶片的POD 活性持续 下降,CK、0.15%及0.30%土壤含盐量处理组植株叶片的POD 活性在上升一段时间后呈下降趋势。综上所述,日 本荚蒾对轻度土壤盐胁迫(0.15%及以下土壤含盐量)具有一定的抵抗能力和适应能力,但在0.30%及以上含盐量 土壤条件下无法长期存活。以上研究结果为极小种群植物日本荚蒾的保护、迁地引种及园林推广提供了科学依据。
Abstract:
On June 2020, 3-year Viburnum japonicum seedlings were potted for experiment. On July 13th 2020, potted seedlings were treated by 0 (CK), 0.15%, 0.30%, 0.45%, 0.60% and 0.75% Nacl solution. Physiochemical indicators were measured 10 d, 20 d, 30 d, 40 d later. The results showed that the content of MDA, soluble protein and soluble sugar of the plant leaves increased with soil salt content. With the duration of salt stress, the activity of superoxide dismutase (SOD) of seedlings of treatment with 0.15% showed an upward trend, while that of CK and the other treatments increased first and then decreased. Peroxidase (POD) activity of treated seedlings was higher than that of CK, except that treated by 0.60% and 0.75%. But with the duration of stress, POD activity of the treatment with 0.45% continued to decrease, while that of CK and with 0.15% and 0.30% increased first and decreased later. The experiment demonstrated that V. japonicum had resistance and adaptability to soil salt content of 0.15% and below, but cannot survive for a long time under salt content of 0.30% and above.

参考文献/References:

[1] MUNNS R. Genes and salt tolerance: bringing them together [J]. New Phytol,2005,167(3):645-63.
[2] 齐琪,马书荣,徐维东. 盐胁迫对植物生长的影响及耐盐生理机制研究进展[J]. 分子植物育种,2020,18(08):2741-6.
[3] ZHANG X,SHI Z,TIAN Y,et al. Salt stress increases content and size of glutenin macropolymers in wheat grain[J]. Food Chem,2016, 197(APR.15PT.A):516-21.
[4] WANG W,VINOCUR B,ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Plant,2003,218(1):1-14.
[5] JUNCHENG W,LIRONG Y,BAOCHUN L,et al. Comparative proteomic analysis of cultured suspension cells of the halophyte halogeton glomeratus by iTRAQ provides insights into response mechanisms to salt stress[J]. Frontiers in Plant Science,2016,7(30):110.
[6] 刘云芬,彭华,王薇薇,等. 植物耐盐性生理与分子机制研究进展[J]. 江苏农业科学,2019,47(12):30-6.
[7] Flowers T J. Improving crop salt tolerance[J]. J Exp Bot,2004,55(396):13.
[8] JIN LIN Z,HUAZHONG S. Physiological and molecular mechanisms of plant salt tolerance[J]. Photosynth Res,2013,115(1):1-22.
[9] RANA M,MARK T. Mechanisms of salinity tolerance[J]. Ann Rev Plant Biol,2008:596,51-81.
[10] ZHU J K. Plant salt tolerance[J]. Trends Plant Sci,2001,6(2):66-71.
[11] 裘宝林,陈征海,张晓华. 见于浙江的中国及中国大陆新记录植物[J]. 云南植物研究,1994(03):231-4.
[12] 郭亮,孙海平,陈献志,等. 浙江省台州市海岛植物区系的研究[J]. 浙江大学学报(农业与生命科学版),1999(04):28-32.
[13] 朱弘,葛斌杰,叶喜阳. 浙江舟山东福山岛种子植物区系初探[J]. 浙江农林大学学报,2015,32(01):150-5.
[14] 高浩杰,王国明,郁庆君. 舟山市种子植物物种多样性及其分布特征[J]. 植物科学学报,2015,33(01):61-71.
[15] 李瑞姣,岳春雷,李贺鹏,等. 干旱胁迫对日本荚蒾幼苗生理生化特性的影响[J]. 西北林学院学报,2018,33(02):56-61,103.
[16] 李瑞姣,陈献志,岳春雷,等. 干旱胁迫对日本荚蒾幼苗光合生理特性的影响[J]. 生态学报,2018,38(06):2041-7.
[17] 夏云飞,李瑞娇,杨在娟,等. 光照强度对日本荚蒾幼苗生长和生理特性的影响[J]. 浙江林业科技,2020,40(03):16-21.
[18] 王宝党,陈献志,李贺鹏,等. 日本荚蒾嫩枝扦插繁殖研究[J]. 浙江林业科技,2018,38(03):9-15.
[19] 蒋明,应梦豪,徐丽娜,等. 珍稀植物日本荚蒾遗传多样性的ISSR 分析[J]. 浙江大学学报(理学版),2021,48(01):100-6.
[20] 李瑞姣. 极小种群植物日本荚蒾抗旱性和耐荫性研究[D]. 杭州:浙江农林大学,2018.
[21] 邱智敏,李贺鹏,陈楠楠,等. 浙江省极小种群植物日本荚蒾研究进展[J]. 中国野生植物资源,2021,40(09):41-5.
[22] 王佺珍,刘倩,高娅妮,等. 植物对盐碱胁迫的响应机制研究进展[J]. 生态学报,2017,37(16):5565-77.
[23] SORKHEH K,SHIRAN B,ROUHI V,et al. Salt stress induction of some key antioxidant enzymes and metabolites in eight Iranian wild almond species[J]. Acta Physiol Plant,2012,34(1):203-13.
[24] 朱金方,刘京涛,陆兆华,等. 盐胁迫对中国柽柳幼苗生理特性的影响[J]. 生态学报,2015,35(15):5140-6.
[25] 佘建炜,张康,郑旭,等. 海水处理对沼泽小叶桦苗木生长和生理的影响[J]. 南京林业大学学报(自然科学版),2021,45(05):102-8.
[26] 王斌,巨波,赵慧娟,等. 不同盐梯度处理下沼泽小叶桦的生理特征及叶片结构[J]. 林业科学,2011,47(10):29-36.
[27] 刘爱荣,张远兵,钟泽华,等. 盐胁迫对彩叶草生长和渗透调节物质积累的影响[J]. 草业学报,2013,22(02):211-8.
[28] 成铁龙,李焕勇,武海雯,等. 盐胁迫下4 种耐盐植物渗透调节物质积累的比较[J]. 林业科学研究,2015,28(06):826-32.
[29] 邵红雨,孔广超,齐军仓,等. 植物耐盐生理生化特性的研究进展[J]. 安徽农学通报,2006,12(09):51-3.
[30] 刘兴亮. 盐碱胁迫对白刺生理生化特性研究[D]. 哈尔滨:东北农业大学,2010.
[31] 田国忠,李怀方,裘维蕃. 植物过氧化物酶研究进展[J]. 武汉植物学研究,2001(04):332-44.
[32] 宋福南,杨传平,刘雪梅,等. 盐胁迫对柽柳超氧化物歧化酶活性的影响[J]. 东北林业大学学报,2006(03):54-6.
[33] 彭立新,周黎君,冯涛,等. 盐胁迫对沙枣幼苗抗氧化酶活性和膜脂过氧化的影响[J]. 天津农学院学报,2009,16(04):1-4.
[34] 张琳婷,肖兰,姜德刚. 中国海岛植物种植管控技术研究进展[J]. 世界林业研究,2020,33(04):74-81.

相似文献/References:

[1]卢 刚,李贺鹏*,张晓勉,等.盐胁迫对海滨木槿幼苗生长及光合特性的影响[J].浙江林业科技,2015,35(03):16.
[2]郭亮,李贺鹏*,卢刚,等.近无柄雅榕对盐胁迫的生理响应和引种试验[J].浙江林业科技,2016,36(04):1.
 GUO Liang,LI He-peng*,LU Gang,et al.Physiological Responses of Ficus concinna var. subsessilis Seedingsto Salt Stress and Introduction Test[J].Journal of Zhejiang Forestry Science and Technology,2016,36(01):1.
[3]王珺,李贺鹏*,黄云峰,等.盐胁迫对夹竹桃幼苗生长及光合特性的影响[J].浙江林业科技,2016,36(05):45.
 WANG Jun,LI He-peng*,HUANG Yun-feng,et al.Effect of Salt Stress on Growth and PhotosyntheticProperties of Nerium indicum Seedlings[J].Journal of Zhejiang Forestry Science and Technology,2016,36(01):45.
[4]孙 慧,吴 华,张 振,等.NaCl 胁迫对海滨木槿幼苗AsA-GSH 循环的影响[J].浙江林业科技,2018,38(02):57.[doi:10.3969/j.issn.1001-3776.2018.02.009]
 SUN Hui,WU Hua,ZHANG Zhen,et al.Effects of NaCl Stress on AsA-GSH Cycle in Seedlings of Hibiscus hamabo[J].Journal of Zhejiang Forestry Science and Technology,2018,38(01):57.[doi:10.3969/j.issn.1001-3776.2018.02.009]
[5]王宝党,陈献志,李贺鹏,等.日本荚蒾嫩枝扦插繁殖研究[J].浙江林业科技,2018,38(03):9.[doi:10.3969/j.issn.1001-3776.2018.03.002]
 WANG Bao-dang,CHEN Xian-zhi,LI He-peng,et al.Study on Softwood Cutting Propagation of Viburnum japonicum[J].Journal of Zhejiang Forestry Science and Technology,2018,38(01):9.[doi:10.3969/j.issn.1001-3776.2018.03.002]
[6]夏云飞,李瑞娇,杨在娟,等.光照强度对日本荚蒾幼苗生长和生理特性的影响[J].浙江林业科技,2020,40(03):16.[doi:10.3969/j.issn.1001-3776.2020.03.003]
 XIA Yun-fei,LI Rui-jiao,YANG Zai-juan,et al.Effect of Light Intensity on Growth and Physiological Characteristics of Viburnum japonicum Seedlings[J].Journal of Zhejiang Forestry Science and Technology,2020,40(01):16.[doi:10.3969/j.issn.1001-3776.2020.03.003]
[7]章建红,焦云,沈登锋,等.盐胁迫对美国山核桃果实品质的影响[J].浙江林业科技,2022,42(05):114.[doi:10.3969/j.issn.1001-3776.2022.05.019]
 ZHANG Jian-hong,JIAO Yun,SHEN Deng-feng,et al.Effect of Salt Stress on Fruit Quality of Carya illinoensis ‘Paunee’[J].Journal of Zhejiang Forestry Science and Technology,2022,42(01):114.[doi:10.3969/j.issn.1001-3776.2022.05.019]

备注/Memo

备注/Memo:
收稿日期:2021-09-01;修回日期:2021-11-03 基金项目:浙江省省院合作项目(2015SY01);浙江省院所专项项目(2016F30011) 作者简介:徐千瑞,硕士研究生,从事植物生态研究;E-mail:100540507@qq.com。通信作者:岳春雷,博士,研究员,从事植物生态研究; E-mail: 1049876924@qq.com。
更新日期/Last Update: 2022-01-30