[1]李珍,闫道良,郑炳松.钛对逆境胁迫下植物生理生化特性影响的研究[J].浙江林业科技,2021,41(02):73-78.[doi:10.3969/j.issn.1001-3776.2021.02.013]
 LI Zhen,YAN Dao-liang,ZHENG Bing-song.Researches on Effect of Titanium Compound on Physiological and Biochemical Properties of Plants under Stress[J].Journal of Zhejiang Forestry Science and Technology,2021,41(02):73-78.[doi:10.3969/j.issn.1001-3776.2021.02.013]
点击复制

钛对逆境胁迫下植物生理生化特性影响的研究()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
41
期数:
2021年02期
页码:
73-78
栏目:
综述专论
出版日期:
2021-04-20

文章信息/Info

Title:
Researches on Effect of Titanium Compound on Physiological and Biochemical Properties of Plants under Stress
文章编号:
1001-3776(2021)02-0073-06
作者:
李珍闫道良郑炳松
浙江农林大学亚热带森林培育国家重点实验室,浙江 杭州 311300
Author(s):
LI ZhenYAN Dao-liangZHENG Bing-song
State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
关键词:
植物非生物胁迫生理生化抗逆性
Keywords:
plants Titanium abiotic stress physiological and biochemical resistance
分类号:
Q945.78
DOI:
10.3969/j.issn.1001-3776.2021.02.013
文献标志码:
A
摘要:
钛(Ti)是对植物生长有刺激和促进作用的有益元素之一,能够在一定程度上提高植物的抗逆性。文章综 述了植物在逆境胁迫下,外源Ti 对其抗氧化系统、光合特性、激素效应以及养分吸收的影响,以期为农林业中通 过施加钛制剂提高植物抗逆性,减轻非生物胁迫对植物的不利影响提供参考。
Abstract:
Reviews were made on effect of application of exogenous Titanium compound on photosynthetic properties, antioxidant system, hormone and nutrient absorption of plants under stress. Further studies should be aimed at plant resistance by titanium compound.

参考文献/References:

[1] 何凌仙子,贾志清,刘涛,等. 植物适应逆境胁迫研究进展[J]. 世界林业研究,2018,31(2):13-18.
[2] 鲍碧娟. 植物生长的有益元素——钛(Ti)[J] . 磷肥与复肥,2001,16(5):67.
[3] RADKOWSKI A,RADKOWSKA I,LEMEK T. Effects of Foliar Application of Titanium on Seed Yield in Timothy (Phleum pratense L.)[J]. Ecol Chem Engin,2015,22(4):691-701.
[4] 谢庭生,魏晓,王芳,等. 农作物施用复合钛剂的正效应[J]. 湖南农业科学,2018(1):51-54,59.
[5] LI J,NAEEM M S,WANG X P,et al. Nano-TiO2 Is Not Phytotoxic As Revealed by the Oilseed Rape Growth and Photosynthetic Apparatus Ultra-Structural Response[J]. PLoS ONE,2015,10(12):e0143885.
[6] ZHENG L,SU M Y,WU X,et al. Antioxidant Stress is Promoted by Nano-anatase in Spinach Chloroplasts Under UV-B Radiation[J]. Biol Trace Elem Res,2008,121(1):69-79.
[7] 杜娟,许自成,李志刚,等. 植物钛素营养研究进展[J]. 江西农业学报,2010,22(1):42-44.
[8] HONG F S,ZHOU J,LIU C,et al. Effect of nano-TiO2 on Photochemical Reaction of Chloroplasts of Spinach[J]. Biol Trace Elem Res,2005, 105(1-3):269-279.
[9] ZE Y G,LIU C,WANG L,et al. The Regulation of TiO2 Nanoparticles on the Expression of Light-harvesting Complex II and Photosynthesis of Chloroplasts of Arabidopsis thaliana[J]. Biol Trace Elem Res,2011,143(2):1131-1141.
[10] BHARTI A S,SHARMA S,SHUKLA N,et al. Steady State and Time Resolved Laser-induced Fluorescence of Garlic Plants Treated with Titanium Dioxide Nanoparticles[J]. Spectrosc Let,2018,51(1):45-54.
[11] YANG F,LIU C,GAO F Q,et al. The Improvement of Spinach Growth by Nano-anatase TiO2 Treatment is Related to Nitrogen Photoreduction[J]. Biol Trace Elem Res,2007(119):77-88.
[12] HONG F S,YANG F,LIU C,et al. Influences of Nano-TiO2 on the Chloroplast Ageing of Spinach under Light[J]. Biol Trace Elem Res,2005b (104):249-260.
[13] MARIYA K,MOHAMED H L. Nanoparticles and Plants: from Toxicity to Activation of Growth, Handbook of Nanotoxicology, Nanomedicine and Stem Cell Use in Toxicology[J]. Wiley,2014:121–130.
[14] GAO F Q,HONG F S,LIU C,et al. Mechanism of Nano Anatase TiO2 on Promoting Photosynthetic Carbon Reaction of Spinach[J]. Biol Trace Elem Res,2006,111:239-245.
[15] JI Y,ZHOU Y,MA C X,et al. Jointed toxicity of TiO2 NPs and Cd to Rice Seedlings: NPs Alleviated Cd Toxicity and Cd Promoted NPs Uptake[J]. Plant Physiol Biochem,2017,110:82-93.
[16] OGUNKUNLE C O,ODULAJA D A,AKANDE F O,et al. Cadmium Toxicity in Cowpea Plant: Effect of Foliar Intervention of Nano-TiO2 on Tissue Cd Bioaccumulation, Stress Enzymes and Potential Dietary Health Risk[J]. J Biotechnol,2020,310:54-61.
[17] SINGH J W,LEE B K. Influence of Nano-TiO2 Particles on the Bioaccumulation of Cd in Soybean Plants (Glycine max): A Possible Mechanism for the Removal of Cd from the Contaminated Soil[J]. J Environ Manag,2016,170:88-96.
[18] QI M F,LIU Y F,LI T L. Nano-TiO2 Improve the Photosynthesis of Tomato Leaves under Mild Heat Stress[J]. Biol Trace Elem Res,2013, 156(1-3):323-328.
[19] AHMAD B,SHABBIR A,JALEEL H,et al. Efficacy of Titanium Dioxide Nanoparticles in Modulating Photosynthesis, Peltate Glandular Trichomes and Essential Oil Production and Quality in Mentha piperita L[J]. Cur Plant Biol,2018,13:6-15.
[20] GAO J G,XU G D,QIAN H H,et al. Effects of Nano-TiO2 on Photosynthetic Characteristics of Ulmus elongata Seedlings[J]. Environ Pollut, 2013,176:63-70.
[21] 李合生. 现代植物生理学:第3 版[M]. 北京: 高等教育出版社, 2012:356.
[22] KARAMIAN R,GHASEMLOU F,AMIRI H. Physiological Evaluation of Drought Stress Tolerance and Recovery in Verbascum Sinuatum Plants Treated with Methyl Jasmonate, Salicylic Acid and Titanium Dioxide Nanoparticles[J]. Plant Biosyst,2020,154(3):277-287.
[23] CHOI H G,MOON B Y,BEKHZOD K,et al. Effects of Foliar Fertilization Containing Titanium Dioxide on Growth, Yield and Quality of Strawberries during Cultivation[J]. Hort Environ Biotechnol,2015,56(5):575-581.
[24] RENATA S,KAROLINA K,IRENEUSZ ?,et al. Titanium Dioxide Nanoparticles (100-1 000 mg/l) can Affect Vitamin E Response in Arabidopsis thaliana[J]. Environ Pollut,2016,213:957-965.
[25] SONG U,SHIN M,LEE G,et al. Functional Analysis of TiO2 Nanoparticle Toxicity in Three Plant Species[J]. Biol Trace Elem Res,2013, 155(1):93-103.
[26] SHANKAR L,SHILPA R. Effect of Titanium Dioxide Nanoparticles on Hydrolytic and Antioxidant Enzymes during Seed Germination in Onion[J]. Int J Curr Microbiol App Sci,2014,3(7):749-760
[27] REZAIZAD M,HASHEMI-MOGHADDAM H,ABBASPOUR H,et al. Photocatalytic Effect of TiO2 Nanoparticles on Morphological and Photochemical Properties of Stevia Plant (Stevia rebaudiana Bertoni)[J]. Sugar Tech,2019,21(6):1024-1030.
[28] YANG F,HONG F S,YOU W J,et al. Influence of Nano-anatase TiO2 on the Nitrogen Metabolism of Growing Spinach[J]. Biol Trace Elem Res,2006(110):179-190.
[29] ZHENG L,SU M Y,LIU C,et al. Effects of Nanoanatase TiO2 on Photosynthesis of Spinach Chloroplasts under Different Light Illumination[J]. Biol Trace Elem Res,2007(119):68-76.
[30] ABDEL LATEF A A H,SRIVASTAVA A K,EL-SADEK M S A,et al. Titanium Dioxide Nanoparticles Improve Growth and Enhance Tolerance of Broad Bean Plants under Saline Soil Conditions[J]. Land Degrad Devel,2018,29(4):1065-1073.
[31] Gohari G,Mohammadi A,Akbari A,et al. Titanium Dioxide Nanoparticles (TiO2 NPs) Promote Growth and Ameliorate Salinity Stress Effects on Essential Oil Profile and Biochemical Attributes of Dracocephalum moldavica[J]. Sci Rep,2020,10(1):912-926
[32] HUSSAIN S,IQBAL N,BRESTIC M,et al. Changes in Morphology, Chlorophyll Fluorescence Performance and Rubisco Activity of Soybean in Response to Foliar Application of Ionic Titanium under Normal Light and Shade Environment[J]. Sci Total Environ,2019,658(MAR 25): 626-637.
[33] 张俊霞,刘晓鹏,向极钎. 植物抗氧化系统对逆境胁迫的动态响应[J]. 湖北民族学院学报(自然科学版),2015,33(4):435-439.
[34] KHAN N. Nano-titanium Dioxide (Nano-TiO2) Mitigates NaCl Stress by Enhancing Antioxidative Enzymes and Accumulation of Compatible Solutes in Tomato (Lycopersicon esculentum Mill.)[J]. J Plant Ences,2016(11):1-11.
[35] LIAN J P,ZHAO L F,WU J N,et al. Foliar Spray of TiO2 Nanoparticles Prevails over Root Application in Reducing Cd Accumulation and Mitigating Cd-induced Phytotoxicity in Maize (Zea mays L.)[J]. Chemosphere,2020,239:124794.
[36] KATIYAR P,YADU B,KORRAM J,et al. Titanium Nanoparticles Attenuates Arsenic Toxicity by up-regulating Expressions of Defensive Genes in Vigna radiata L[J]. J Environ Sci. 2020,92:18-27.
[37] MANDEH M,OMIDI M,RAHAIE M. In Vitro Influences of TiO2 Nanoparticles on Barley (Hordeum vulgare L.) Tissue Culture[J]. Biol Trace Elem Res,2012,150(1-3):376-380.
[38] 万春侯. 钛与植物生长[J]. 农资科技,2001(6):18-20.
[39] EZZAT G,SHREEN A,ASHRAF F,et al. Copper Sulfate Nanoparticles Enhance Growth Parameters, Flavonoid Content and Antimicrobial Activity of Ocimum Basilicum Linnaeus[J]. J Am Sci,2017,13:108-114.
[40] MARSCHNER P. Marschner’s Mineral Nutrition of Higher Plants, Third Edition[M].Elsevier. 2011.
[41] YUAN S J,CHEN J J,LIN Z Q,et al. Nitrate Formation from Atmospheric Nitrogen and Oxygen Photocatalysed by Nano-sized Titanium Dioxide[J]. Nature Communicat,2013,4(1):293-296.
[42] 张咪咪. 甜叶菊糖苷含量和积累量与钛吸收的相关性研究[D]. 合肥:安徽农业大学,2016.
[43] LAETITIA P B.,LEONHARDT N,VAVASSEUR A,et al. Heavy Metal Toxicity: Cadmium Permeates Through Calcium Channels and Disturbs the Plant Water Status[J]. Plant J,2002,32(4):539-548.
[44] ZHANG M,LIU X C,YUAN L Y,et al. Transcriptional Profiling in Cd-treated Rice Seedling Roots Using Suppressive Subtractive Hybridization[J]. Plant Physiol Biochem,2012,50:79-86.
[45] LI X G,GUI X,RUI Y K,et al. Bt-transgenic Cotton is More Sensitive to CeO2 Nanoparticles than its Parental Non-transgenic Cotton[J] . J Hazard Mater,2014(274):173-180.
[46] WANG Z Y,XIE X Y,ZHAO J,et al. Xylem-and Phloem-based Transport of CuO Nanoparticles in Maize (Zea mays L.)[J]. Environ Sci Technol,2012,l46:4434-4441.
[47] LIN S J,REPPERT J,HU Q,et al. Uptake, Translocation, and Transmission of Carbon Nanomaterials in Rice Plants[J]. Small (Weinheim an der Bergstrasse,Germany),2009,5(10):1128-1132.
[48] SHI J Y,PENG C,YANG Y Q,et al. Phytotoxicity and Accumulation of Copper Oxide Nanoparticles to the Cu-tolerant Plant Elsholtzia Splendens[J]. Nanotoxicology,2014,8(2):179-188.
[49] 张元湖,樊继莲,曾英松,等. 螯合钛提高冬小麦抗旱性的研究[J]. 山东农业大学学报,1995(1):111-114.
[50] JABERZADEH A,MOAVENI P,MOGHADAM T,et al. Influence of Bulk and Nanoparticles Titanium Foliar Application on Some Agronomic Traits, Seed Gluten and Starch Contents of Wheat Subjected to Water Deficit Stress[J]. Notul Bot Horti Agrobot Cluj-Napoca,2013,41(1): 201-207.
[51] LARUE C,LAURETTE J,HERLINBOIME N,et al. Accumulation, Translocation and Impact of TiO2 Nanoparticles in Wheat (Triticum aestivum spp.): Influence of Diameter and Crystal Phase[J]. Sci Total Environ,2012,431:197-208.
[52] 马晓玥,袁彬彬,方国东,等. 二氧化钛纳米颗粒对大豆根部吸收芘的影响[J]. 农业环境科学学报,2020(9):1-11.
[53] RALIYA R,NAIR R,CHAVALMANE S,et al. Mechanistic Evaluation of Translocation and Physiological Impact of Titanium Dioxide and Zinc Oxide Nanoparticles on the Tomato (Solanum lycopersicum L.)Plant[J]. Metallomics:Integ Biomet Sci,2015,7(12):1584-1594
[54] 朱京涛,曹霞. 抗坏血酸钛对樱桃番茄产量和品质的影响[J]. 北方园艺,2009(6):74-76.
[55] 邵建华,陈绍荣,孙玲丽. 氨基酸型钛肥在农作物生产中的应用研究[J]. 磷肥与复肥,2019,34(4):34-35,38

备注/Memo

备注/Memo:
收稿日期:2020-12-01;修回日期:2021-01-25
基金项目:国家重点研发计划(2018YFD1000604)
作者简介:李珍,硕士研究生,从事林业资源开发利用研究;E-mail:lizhen@stu.zafu.edu.cn。通信作者:郑炳松,博士,教授,从事经济林 及植物生理生化研究;E-mail:bszheng@zafu.edu.cn。
更新日期/Last Update: 2021-04-20