[1]尤程,潘洁,刘运书.基于无人机遥感的松材线虫病识别定位与视频会商系统开发研究[J].浙江林业科技,2021,41(01):51-58.[doi:10.3969/j.issn.1001-3776.2021.01.008]
 YOU Cheng,PAN Jie,LIU Yun-shu.System for Bursaphelenchus xylophilus Infeccted Pines Identification and Positioning andVideo Meeting based on Remote Sensing[J].Journal of Zhejiang Forestry Science and Technology,2021,41(01):51-58.[doi:10.3969/j.issn.1001-3776.2021.01.008]
点击复制

基于无人机遥感的松材线虫病识别定位与视频会商系统开发研究()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
41
期数:
2021年01期
页码:
51-58
栏目:
出版日期:
2021-02-10

文章信息/Info

Title:
System for Bursaphelenchus xylophilus Infeccted Pines Identification and Positioning andVideo Meeting based on Remote Sensing
文章编号:
1001-3776(2021)01-0051-08
作者:
尤程潘洁刘运书
(南京林业大学林学院,江苏南京 210037)
Author(s):
YOU Cheng1PAN Jie1LIU Yun-shu1
( Forestry College, Nanjing Forestry University, Nanjing 210037, China)
关键词:
无人机遥感松材线虫病识别定位视频会商系统
Keywords:
UAV remote sensing Bursaphelencus xylophilus identification positioning video meeting system
分类号:
S771.8;S763.1
DOI:
10.3969/j.issn.1001-3776.2021.01.008
文献标志码:
A
摘要:
为实现松材线虫病Bursaphelenchus xylophilus 的有效识别和定位,开发了基于Java、C++和HTML 编程语言,结合OpenCV 开源库、CloudRoom SDK、GeoTools 工具和MySql 数据库的具有松材线虫病识别定位和视频会商两个模块的系统。该系统利用OpenCV 算法对感病松树Pinus sp. 进行识别和标绘,利用HTTP 从数据库/服务器查询到的DEM 数据,结合影像空间位置和姿态信息,实现无人机平台的单木水平松材线虫病的识别定位,感病松树定位水平偏移最小值为0.09 m,最大值1.77 m,平均误差为0.64 m,均方根误差为0.492 8 m;并基于视频编解码原理和Cloudroom SDK,开发了视频会商系统,实现了无人机实时视频流的网络传输和视频会商指挥通信功能。本系统对实现松材线虫病的精准识别与实施监测提供了方法借鉴。
Abstract:
Presentations were made on a system with two modules of Bursaphelencus xylophilus infected pines identification and positioning andvideo meeting based on Java, C++ and HTML programming languages, combined with OpenCV open source library, CloudRoom SDK, GeoToolsand MySql database. Test of the system was carried out in July and September in Nanjing, Jiangsu province. The result demonstrated that the systemhad the minimum value and maximum value of 0.09 m and 1.77 m of horizontal shift of positioning, with the average error of 0.64 m,root-mean-square error of 0.492 8 m. Based on the video codec principle and Cloudroom SDK, a video meeting system was developed to realize thenetwork transmission of real-time video stream of UAV and the function of video meeting.

参考文献/References:

[1] 代君,管宇峰,任淑红. 多旋翼无人机研究现状与发展趋势探讨[J]. 赤峰学院学报(自然科学版),2016,32(16):22-24.
[2] MCKERROW P. Modeling the Draganflyer four-rotor helicopter[C]//IEEE International Conference on Robotics and Automation,2004.Proceedings. ICRA’04. 2004. IEEE,2004,4:3596-3601.
[3] 吴成富,刘小齐,袁旭. 四旋翼无人机建模及其PID 控制律设计[J]. 电子设计工程,2012,20(16):68-70.
[4] 李宇昊. 无人遥感飞机在林业调查中的应用研究[D]. 北京:北京林业大学,2008.
[5] 贾鹏宇,冯江,于立宝. 小型无人机在农情监测中的应用研究[J]. 农机化研究,2015,37(04):261-264.
[6] 刘万才,黄冲. 我国农作物现代病虫测报建设进展[J]. 植物保护,2018,44(05):159-167.
[7] 韩光辉. 基于无线传感器网络的温室黄瓜病害监测系统研究[D]. 长春:吉林农业大学,2011.
[8] 张谷丰. 基于WebGis 的农作物病虫预警诊断平台[D]. 南京:南京农业大学,2009.
[9] 潘洁,廖振峰,张衡. 基于高光谱数据的森林病虫害监测系统研制[J]. 林业科技开发,2015,29(05):125-129.
[10] JIANG J A,LU T C,LU F M,et al. A GSM-based remote wireless automatic monitoring system for field information: A case study for
ecological monitoring of the oriental fruit fly, Bactrocera dorsalis (Hendel)[J]. Comput Electr Agr,2008,62(2):243-259.
[11] 陈海中,张友华,刘家成等.安徽省农作物病虫监测预警平台的研制[J]. 中国植导刊,2013,33(11):54-58.
[12] 冷伟锋. 小麦条锈病遥感监测及网络信息平台构建[D]. 北京:中国农业大学,2015.
[13] BANGE M P,DEUTSCHER S A,LARSEN D,et al. A handheld decision support system to facilitate improved insect pest management in
Australian cotton systems[J]. Comput Electr Agr,2004(2).
[14] 张卫丹,滕桂法,王春山.基于android 手机的枣树病虫害短信诊断平台的研究[J]. 科技通报,2013,29(11):67-70.
[15] 黄冲,刘万才,姜玉英. 微信公众号发布病虫情报的创新与实践[J]. 中国植保导刊,2017,37(10):30-34.
[16] 赵博光,郭道森,高蓉. 松材线虫携带细菌部位的电镜观察[J].南京林业大学学报,2000,04:69-71.
[17] ZHAO B G,WANG H L,HAN S F. Distribution and pathogenicity of bacteria species carried by Bursaphelenchus xylophilus in China[J].
Nematology,2003,24:72-74.
[18] ZHAO B G,LIN F. Mutualistic symbiosis between Bursaphelenchus xylophilus and bacteria of the genus Pseudomonas[J]. For Pathol,2005,
29:339-345.
[19] KIM Y S,JUNG S E,LEE W K. Analyzing vegetation index change of damaged trees by pine wilt disease using portable near infrared
camera[J]. Kor For Soc,2008,97:561-564.
[20] KIM M I,LEE W K,KWON T H,et al. Early detecting damaged trees by pine wilt disease using DI(Detection Index) from portable near
infrared camera[J]. Kor For Soc,2011,100:374-381.
[21] 刘金燕. 无人机遥感技术国内松材线虫病监测研究[J]. 大科技,2019(032):161-162.
[22] 李浩,徐航煌,郑恒宇,等. 基于无人机遥感图像的松材线虫病监测技术研究[J]. 中国农机化学,2019(9):55,59.

相似文献/References:

[1]蒋敏,黄斌,余旭,等.松材线虫病的分布、危害及其防治对策[J].浙江林业科技,2018,38(06):83.[doi:10.3969/j.issn.1001-3776.2018.06.015]
 JIANG Min,HUANG Bin,YU Xu,et al.Distribution,Damage and Controlof Pine Wilt Disease[J].Journal of Zhejiang Forestry Science and Technology,2018,38(01):83.[doi:10.3969/j.issn.1001-3776.2018.06.015]

备注/Memo

备注/Memo:
收稿日期:2020-09-16;修回日期:2020-11-04基金项目:国家自然科学基金资助项目(31470579)作者简介:尤程,硕士,从事遥感与GIS 应用技术研究;E-mail:543703226@qq.com。通信作者:潘洁,副教授,博士,从事遥感与GIS 应用及3S 技术集成研究;E-mail:panjie_njfu@126.com。
更新日期/Last Update: 2021-02-10