[1]王海蓉,齐 明,叶金俊,等.杉木杂交组合内生长性状分离的机制探讨[J].浙江林业科技,2020,40(03):1-8.[doi:10.3969/j.issn.1001-3776.2020.03.001]
 WANG Hai-rong,QI Ming,YE Jin-jun,et al.Mechanism of Segregation of Growth Traits in Cunninghamia lanceolata Cross Combination[J].Journal of Zhejiang Forestry Science and Technology,2020,40(03):1-8.[doi:10.3969/j.issn.1001-3776.2020.03.001]
点击复制

杉木杂交组合内生长性状分离的机制探讨()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
40
期数:
2020年03期
页码:
1-8
栏目:
出版日期:
2020-06-20

文章信息/Info

Title:
Mechanism of Segregation of Growth Traits in Cunninghamia lanceolata Cross Combination
文章编号:
1001-3776(2020)03-0001-08
作者:
王海蓉1齐 明23叶金俊1何贵平23
1. 浙江省遂昌县林业技术推广总站,浙江 遂昌 323300;2. 中国林业科学研究院亚热带林业研究所,浙江 杭州 311400;3. 浙江省林木育种技术研究重点实验室,浙江 杭州 311400
Author(s):
WANG Hai-rong1QI Ming23YE Jin-jun1HE Gui-ping23
1. Suichang Forestry Extension Station of Zhejiang, Sui chang 323300, China; 2. Research Institute of Subtropical Forestry of CAF, Hangzhou 311400, China; 3. Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou 311400, China
关键词:
杉木杂交组合生长性状分离转录组测序分子机理
Keywords:
Cunninghamia lanceolata cross combination growth traits segregation transcriptome sequencing molecular mechanism
分类号:
S718.46
DOI:
10.3969/j.issn.1001-3776.2020.03.001
文献标志码:
A
摘要:
为研究杉木Cunninghamia lanceolata 杂交组合内子代生长性状分离的分子机制,以杉木杂种和亲本为研究对象,从基因表达水平揭示超亲杂种优于低亲杂种的形成分子机制,采用Illumina Hiseq 4000 高通量测序技术对不同生长势的杉木杂种(龙15×1339)的超高亲子代(HF1)和超低亲子代(LF2)及其亲本(龙15 和1339)进行无参转录组测序和差异比较。结果表明,所有样本经转录组测序共产生Clean reads 5.8E+08 条,总拼接长度为49 803 726nt,将Clean reads 在6 个数据库(Nr,Swiss-prot,KOG,KEGG,Pfam,GO)进行BLASTX 分析,比对结果产生80 171 个基因;杉木同一组合内的HF1 比LF2 的生产力高,是因为HF1 在不同的GO 和KEGG terms内和terms 间两个层面上的差异表达基因的分布处于不均匀、不平衡状态;HF1 的GO terms 和KEEG terms 的差异基因的分布不均匀、不平衡;LF2 GO terms 和KEEG terms 的差异基因的分布趋于均匀、平衡状态。利用分子生物学技术对育种群体展开遗传多样性研究,选择表达基因互补的亲本进行杂交组配,这样可以降低杂种间生长性状的分离,以达到收获期大体一致的目的,是一条可行的技术路线。
Abstract:
Using the latest second-generation Cunninghamia lanceolate hybrids (Long 15×1339), HF1(3 super-parent hybrids), LF2( 3 low-parent hybrids) and parents (P1 and P2),all sample groups were compared by transcriptome sequencing. The result demonstrated that in a total of 12 samples, 5.8E+08 Clean reads were generated by transcriptome sequencing, and the total length was 49 803 726nt. BLASTX analysis was performed on Clean reads in six databases (Nr, Swiss-prot, KOG, KEGG, Pfam, GO), through sequence alignment which resulted in 80 171 unigenes. Analysis indicated that the productivity of C.lanceolata hyhybrids associated to the following factors, growth of progenies in cross combination ssegregated, growth of HF1 faster than that of LF2, which was due to the uneven and unbalanced distribution of expression unigeneattwo-level: among GO and KEGG terms and within GO and KEGG terms. The differential genes of GO and KEEG terms in high parental generation were not evenly distributed and balanced; The distribution of the difference genes of GO terms and KEEG terms in the low parental generation tends to be uniform and balanced.

参考文献/References:

[1] 何贵平,齐明,程亚平,等. 杉木杂交育种中亲本选配方法的研究[J]. 江西农业大学学报,2016,38(4):646-653.
[2] 何贵平,齐明. 杉木育种策略及应用[M]. 北京:中国林业出版社,2017:33-77,P149-174.
[3] 邓继光,黄庆文,刘凤君,等. 一年生李杂种苗性状分离研究初报[J]. 沈阳农业大学学报,1995,26(4):363-368.
[4] 王丹,肖慈木,李秀,等. 柚杂交一年生苗期性状分离初步研究[J]. 中国南方果树,2001,31(1):3-7.
[5] 鹿金颖,毛永民,申连英,等. 枣实生后代性状分离研究[J]. 河北农业大学学报,2003,26(5):53-58.
[6] 王冬梅,伊凯. 苹果杂种叶片与果实的相关性研究[J]. 北方果树,2004,(3):12-14.
[7] 张小猜,赵政阳,樊红科,等. 苹果杂种F1 代叶片性状分离及早期选择研究[J]. 西北农业学报,2009,18(5):228-231.
[8] 崔艳波,张绍铃,吴华清,等. 梨杂交后代童期和童程的研究[J]. 中国农学通报,2011,27(2):128-131.
[9] 吴敏,刘永杰,李世强,等. 库尔勒香梨杂种实生苗性状分离初步研究[J]. 新疆农业科学,2011,48(5):826-831.
[10] LU Q,SHAO F,MACMILLAN C,et al. Genomewide analysis of the lateral organ boundaries domain gene family in Eucalyptus grandis reveals members that differentially impact secondary growth[J]. Plant Biotechnol J,2018,16(1):124-136.
[11] ZHANG Y,HAN X,SANG J,et al. Transcriptome analysis of immature xylem in the Chinese fir at different developmental phases[J]. Peerj, 2016,4(17):e2097; DOI 10.7717/peerj.2097.
[12] HUANGHH,XULL,TONG ZK,et al. De novo characterization of the Chinese fir (Cunninghamialanceolata) transcriptome and analysis of candidate genes involved in cellulose and lignin biosynthesis[J]. BMC Genomics,2012,13(1):648-658.
[13] WANG ZJ,CHENJH,LIU WD,et al .Transcriptome Characteristics and Six Alternative Expressed Genes Positively Correlated with the Phase Transition of Annual Cambial Activities in Chinese Fir (Cunninghamialanceolata (Lamb.)Hook)[J].PLOS one,2013,8(8):1-14.
[14] 齐明. 浙南地区杉木杂交组合再选择研究[J]. 林业科学研究,2005,18(6):722-725.
[15] 齐明,何贵平,周建革,等. 杉木生长性状的杂种优势转录组分析[J]. 林业科学研究,2019,32(3):113-120.
[16] 李阳. 亚硝酸盐对水稻胚性愈伤组织的诱导作用及机制[D]. 湖北:武汉大学,2016.
[17] 丁健. 沙棘果肉和种子油脂合成积累及转录表达差异研究[D]. 哈尔滨:东北林业大学,2016.
[18] 冯延芝.杜仲种仁转录组测序及FAD3 基因鉴定与功能研究[D]. 北京:中国林业科学研究院,2016.
[19] 翟荣荣. 超级稻协优9308 根系杂种优势转录组分析[D]. 杭州:中国农科院水稻所,2013.
[20] 蒋桂雄. 油桐种子转录组解析及油脂合成重要基因克隆[D].长沙:中南林业科技大学,2014.
[21] 齐明,王海蓉,彭九生. 杉木育种园的遗传多样性和杂种优势群的划分[J]. 南方林业科学,2018,46(6):17-21.
[22] 齐明,何贵平,周建革,等. 杉木无性系光合特性和呼吸速率的遗传变异性及杂交亲本筛选[J]. 江西农业大学学报,2018,40(2): 182-189.

相似文献/References:

[1]倪荣新,宋其岩,吴英俊,等.木荷生物防火林带与杉木林可燃物数量比较研究[J].浙江林业科技,2015,35(01):45.
[2]何贵平,林阳峰,程亚平,等.杉木无性系主要经济性状遗传变异和无性系选择[J].浙江林业科技,2015,35(01):65.
[3]刘跃钧,马海泉,陈天华,等.不同抚育措施对杉木大径材培育效果的影响[J].浙江林业科技,2015,35(01):72.
[4]牛帅红,王书强,沈道海,等.杉木集成薄木漂白工艺研究[J].浙江林业科技,2015,35(03):68.
[5]周红敏,彭 辉,柳新红*,等.萌生杉木林经营后林分空间结构变化[J].浙江林业科技,2015,35(04):41.
 [J].Journal of Zhejiang Forestry Science and Technology,2015,35(03):41.
[6]张 骏,葛 滢,吴初平,等.封山育林对不同发育阶段杉木林植物多样性的影响[J].浙江林业科技,2015,35(05):11.
 ZHANG Jun,GE Ying,WU Chu-ping,et al.Influences of Conservation for Regeneration on Plant Diversity of Ecological Cunninghamia lanceolata Forest at Different Development Stage in Zhejiang[J].Journal of Zhejiang Forestry Science and Technology,2015,35(03):11.
[7]方贵荣,邱湧斌,徐金良,等.不同无性系、不同规格杉木扦插苗造林效果研究[J].浙江林业科技,2016,36(02):68.
 FANG Gui-rong,QIU Yong-bin,XU Jin-liang,et al.Growth of Cunninghamia lanceolata Cuttings with Different Clones and Specifications[J].Journal of Zhejiang Forestry Science and Technology,2016,36(03):68.
[8]唐隆校,潘建华,赖根伟.施肥与间伐对杉木大径材培育的影响[J].浙江林业科技,2016,36(03):56.
 TANG Long-xiao,PAN Jian-hua,LAI Gen-wei.Effect of Thinning and Fertilization on Increment in DBH and Volume of Cunninghamia lanceolata Plantation[J].Journal of Zhejiang Forestry Science and Technology,2016,36(03):56.
[9]翁春媚,齐明*,王海蓉,等.杉木中等位酶与早期生长性状间的相关研究[J].浙江林业科技,2015,35(06):45.
 WENG Chun-mei,QI Ming*,WANG Hai-rong,et al.Correlation between Allozyme and Early Growth Traits inCunninghamia lanceolata[J].Journal of Zhejiang Forestry Science and Technology,2015,35(03):45.
[10]徐永兴.杉木-深山含笑混交林及其纯林乔木层的净生产力研究[J].浙江林业科技,2017,37(01):47.[doi:10.3969/j.issn.1001-3776.2017.01.008]
 XU Yong-xing.Net Productivity of Cunninghamia lanceolata and Michelia maudiae in Mixed and Pure Stand[J].Journal of Zhejiang Forestry Science and Technology,2017,37(03):47.[doi:10.3969/j.issn.1001-3776.2017.01.008]

备注/Memo

备注/Memo:
收稿日期:2019-09-12;修回日期:2020-03-31 基金项目:浙江省“十三五”林木新品种育种专项(2016C02056-5);中国林科院基金项目(195005);遂昌县牛头山林场省级林木良种基地建设项目(SL2019B02) 作者简介:王海蓉,工程师,从事林木良种培育工作;E-mail:398843232@qq.com。通信作者:齐明,副研究员,从事杉木多性状遗传改良;E-mail:youqingyi1962@163.com。
更新日期/Last Update: 2020-06-20