[1]吴怡豪,诸葛君昊,张立华,等.山核桃茶藨子葡萄座腔菌全基因组的分泌蛋白预测和功能分析[J].浙江林业科技,2024,44(01):8-18.[doi:10.3969/j.issn.1001-3776.2024.01.002]
 WU Yihao,ZHUGE Junhao,ZHANG Lihua,et al.Prediction and Functional Analysis on Secretory Proteome from the Whole Genome of Botryosphaeria dothidea[J].Journal of Zhejiang Forestry Science and Technology,2024,44(01):8-18.[doi:10.3969/j.issn.1001-3776.2024.01.002]
点击复制

山核桃茶藨子葡萄座腔菌全基因组的分泌蛋白预测和功能分析()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
44
期数:
2024年01期
页码:
8-18
栏目:
研究报告
出版日期:
2024-01-20

文章信息/Info

Title:
Prediction and Functional Analysis on Secretory Proteome from the Whole Genome of Botryosphaeria dothidea
文章编号:
1001-3776(2024)01-0008-011
作者:
吴怡豪 1诸葛君昊1张立华2周乐3杜盛楠1杜世平1苏秀1
(1. 浙江农林大学林业与生物技术学院,浙江杭州 311300;2. 泰顺县自然资源和规划局,浙江温州 325500; 3. 临海市河头镇农业综合服务中心,浙江临海 317034 )
Author(s):
WU Yihao1ZHUGE Junhao1ZHANG Lihua2ZHOU Le3DU Shengnan1DU Shiping1SU Xiu1
(1. College of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; 2. Taishun Natural Resources and Planning Bureau of Zhejiang, Wenzhou 325500, China; 3. Linhai Hetou Township Agricultural Service of Zhejiang, Linhai 317034, China)
关键词:
茶藨子葡萄座腔菌分泌蛋白效应蛋白功能
Keywords:
Botryosphaeria dothidea secretory proteome effector proteins function
分类号:
S436.64;S664.1
DOI:
10.3969/j.issn.1001-3776.2024.01.002
文献标志码:
A
摘要:
茶藨子葡萄座腔菌Botryosphaeria dothidea 是一种世界性分布真菌,能引起山核桃干腐病,导致严重经济损 失。为研究该病害的致病机理及筛选致病基因,通过各类预测与分析工具,对13 130 条蛋白序列的山核桃Carya cathayensis 茶藨子葡萄座腔菌BDLA16-7 全基因组进行了分泌蛋白预测及其功能分析。结果表明,在BDLA16-7 全基因组的编码蛋白序列中,有898 条蛋白序列符合典型分泌蛋白的特征,占总蛋白数的6.84%;分泌蛋白组的 氨基酸组成呈现以下特征:非极性、疏水性氨基酸的含量明显高于极性、亲水性氨基酸,分别占43.6%和27.7%; 蛋白质长度主要分布在100 至600 个氨基酸之间;分泌蛋白序列中通常以19 个氨基酸构成信号肽,丙氨酸(A) 是最常见的非极性氨基酸,而带电侧链的天冬氨酸(D)和谷氨酸(E)的出现频率较低;信号肽的切割位点-3 和 -1 位置上的氨基酸相对保守,典型的氨基酸组合为A-S-A,符合A-X-A 型的特征。此外,分泌蛋白组中包含600 个序列可以完整注释其功能,其中229 个分泌蛋白主要涉及碳水化合物的运输和代谢。在BDLA16-7 分泌蛋白组 中,共存在271 个潜在的效应蛋白,其中14 个与其他病原菌致病相关的效应蛋白具有较高的相似性。此外, BDLA16-7 分泌蛋白组中包含293 个碳水化合物活性酶,以糖苷水解酶家族成员为最多。明确了茶藨子葡萄座腔 菌BDLA16-7 分泌蛋白的长度分布特征,功能分类、信号肽切割位点的氨基酸组成、切割位点的类型和CAZymes 数目,以及CAZymes 中纤维素酶、果胶酶、木聚糖酶的亚家族组成,并筛选到14 个与致病性紧密联系的潜在效 应蛋白。
Abstract:
The full genome of Botryosphaeria dothidea strain BDLA16-7, a pathogenic fungus from an infected Carya cathayensis tree, comprising 13 130 protein sequences, which were analyzed to predict and functionally characterize secretory proteins by various prediction and analysis tools. The results indicated that in the encoded protein sequences of the BDLA16-7 whole genome, there were 898 sequences typical characteristics of secretory proteins, accounting for 6.84% of the total ones. The amino acid composition of the secretory protein group showed the following characteristics: the content of non-polar and hydrophobic amino acids was significantly higher than that of polar and hydrophilic amino acids, accounting for 43.6 % and 27.7 %, respectively. The length of the protein is mainly distributed between 100 and 600 amino acids. Alanine ( A ) is the most common non-polar amino acid, while aspartic acid ( D ) and glutamic acid ( E ) with charged side chains appear less frequently. The amino acids at the cleavage sites-3 and-1 of the signal peptide are relatively conserved, and the typical amino acid combination is A-S-A, which conforms to the characteristics of A-X-A type.Within the secretory protein group, 600 sequences could be fully annotated for their functions, among them, 229 involved in the transport and metabolism of carbohydrates. Among the BDLA16-7 secretory proteins, there were a total of 271 potential effector proteins, with 14 of them showing high similarity to effectors associated with other pathogenic organisms. BDLA16-7 secretory protein group contains 293 CAZymes, dominated by GHs family members. Analysis were made on the length distribution characteristics, functional classification, amino acid composition of signal peptide cleavage site, type of cleavage site and number of CAZymes of secretory proteome of B. dothidea, as well as on the subfamily composition of cellulase, pectinase and xylanase in CAZymes. 14 potential effectors closely related to pathogenicity were screened.

参考文献/References:

[1] MARSBERG A,KEMLER M,JAMI F,et al. Botryosphaeria dothidea: a latent pathogen of global importance to woody plant health[J]. Molec Plant Pathol,2017,18(4):477-488.
[2] PHILLIPS A J L,ALVES A,ABDOLLAHZADEH J,et al. The Botryosphaeriaceae: genera and species known from culture[J]. Stud Mycol,2013,76(1):51-167.
[3] LI W Y,ZHUANG W Y. Taxonomy studies on the Botryosphaeria from China[J]. Mycosystema,2013,32:108-114.
[4] TANG W,DING Z,ZHOU Q Q,et al. Phylogenetic and pathogenic analyses show that the causal agent of apple ring rot in China is Botryosphaeria dothidea[J]. Plant Disease,2012,96(4):486-496.
[5] ZHAI L F,ZHANG M X,LV G,et al. Biological and molecular characterization of four Botryosphaeria species isolated from pear plants showing stem wart and stem canker in China[J]. Plant Diseas,2014,98(6):716-726.
[6] WANG F,ZHAO L N,LI G H. Identification and characterization of Botryosphaeria spp causing gummosis of peach trees in Hubei province central China[J]. Plant Diseas,2011,95(11):1378-1384.
[7] CHEN S F,MORGAN D P,HASEY J K,et al. Phylogeny, morphology, distribution and pathogenicity of Botryosphaeriaceae and Diaporthaceae from English walnut in California[J]. Plant Diseas,2014,98(5):636-652.
[8] YAN J Y,XIE Y,ZHANG W,et al. Species of Botryosphaeriaceae involved in grapevine dieback in China[J]. Fung Divers,2013,61:221-236.
[9] 余仲东,赵官成,淡静雅,等. 葡萄座腔菌属ITS-nrDNA 的分子系统学分析[J]. 菌物学报,2010,29(02):285-293.
[10] DRAGINJA P Z,MALEME H M,BARBARA P,et al. Diversity, phylogeny and pathogenicity of Botryosphaeriaceae on nonnative Eucalyptus grown in an urban environment: A case study[J]. Urban ForUrban Green,2017,26:139-148.
[11] 刘锦,于炜. 山核桃干腐病研究进展[J]. 浙江林业科技,2017,37(06):99-102.
[12] 周晓罡,侯思名,陈铎文,等. 马铃薯晚疫病菌全基因组分泌蛋白的初步分析[J]. 遗传,2011,33(07):125-133.
[13] NIMCHUK Z,EULGEM T,HOLT B F III,et al. Recognition and response in the plant immune system[J]. Ann Rev Genet,2003,37(1):579 -609.
[14] SWEANY R R,DEROBERTIS C D,KALLER M D,et al. Intraspecific growth and aflatoxin inhibition responses to atoxigenic Aspergillus flavus: evidence of secreted, inhibitory substances in biocontrol[J]. Phytopathology,2022,112(10):2084-2098.
[15] YANG K,WU J,WANG X,et al. Genome wide characterization of the mitogen activated protein kinase gene family and their expression patterns in response to drought and Colletotrichum gloeosporioides in walnut (Juglans regia)[J]. Plants,2023,12(3):586.
[16] MARTINEZ-DALTO A,YAN X,DETOMASI T C,et al. Characterization of a unique polysaccharide monooxygenase from the plant pathogen Magnaporthe oryzae[J]. Proc Natl Acad Sci,2023,120(8):e2215426120-e2215426120.
[17] BAO J,WU Q,HUANG J,et al. High quality genome assembly and annotation resource of Botryosphaeria dothidea strain BDLA16-7, causing trunk canker disease on Chinese hickory[J]. Plant Disease,2022,106(3):1023-1026.
[18] PETERSEN T N,BRUNAK S,VON HEIJNE G,et al. SignalP4. 0: discriminating signal peptides from transmembrane regions[J]. Nat Meth,2011,8(10):785-786.
[19] HORTON P,PARK K J,OBAYASHI T,et al. WoLF PSORTRT: protein localization predictor[J]. Nucl Acid Res,2007,35(S2):585-587.
[20] KROCH A,LARSSON B,HEIJNE G V,et al. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes[J]. J Molecul Biol,2001,305(3):567-580.
[21] NIKLAUS F,PASCAL M. Identification of GPI anchor attachment signals by a Kohonen self-organizing map[J]. Bioinformatics,2005,21(9):1846-1852.
[22] JANA S,PETER N D,DONALD M,et al. Improved prediction of fungal effector proteins from secretomes with EffectorP2.0[J]. Molecul Plant Pathol,2018,19(9):2094-2110.
[23] HUERTA C J,SZKLARCZYK D,HELLER D,et al. EggNOG5.0:a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucl Acid Res,2019,47(D1):309-314.
[24] RAINER W,MARTIN U,ANDREW B,et al. PHI base update: additions to the pathogen host interaction database[J]. Nucl Acid Res,2008,36(S1):572-576.
[25] ZHANG H,YOHE T,HUANG L,et al. dbCAN2: a meta server for automated carbohydrate active enzyme annotation[J]. Nucl Acid Res,2018,46(W1):95-101.
[26] 祝友朋,蔡旺芸,韩长志. 基于全基因组序列的尖孢镰刀菌分泌蛋白预测及其特征分析[J]. 河南师范大学学报(自然科学版),2019,47(02):92-97.
[27] 王利民,张银山,张梦娟,等. 假禾谷镰孢菌全基因组分泌蛋白的预测[C]//中国植物病理学会:中国植物病理学会2018 年学术年会论文集. 北京:中国农业科学技术出版社,2018:172.
[28] 高金欣,高士刚,李雅乾,等. 玉米弯孢叶斑病菌全基因组分泌蛋白的预测与分析[J]. 植物保护学报,2015,42(06):869-876.
[29] 韩长志. 全基因组预测禾谷炭疽菌的分泌蛋白[J]. 生物技术,2014,24(02):36-41.
[30] WIT P J G M,MEHRABI R,VANDEN BURG H A,et al. Fungal effector proteins: past, present and future[J]. Molecul Plant Pathol,2009,10(6):735-747.
[31] STERGIOPOULOS I,WIT P J G M. Fungal effector proteins[J]. Ann Rev Phytopathol,2009,47:233-263.
[32] 臧睿,宋璐璐,尹新明,等. 葡萄座腔菌全基因组分泌蛋白的预测及功能分析[J]. 植物病理学报,2021,51(04):559-571.
[33] 聂燕芳,黄嘉瑶,周玲菀,等. 香蕉枯萎病菌热带4 号小种基因组规模分泌蛋白的预测与分析[J]. 江苏农业学报,2017,33(02):288-294.
[34] 康振生,王晓杰,赵杰,等. 小麦条锈菌致病性及其变异研究进展[J]. 中国农业科学,2015,48(17):3439-3453.
[35] OSPINA G M D,GRIFFITH J G,LAIRD E W,et al. The CAZyome of Phytophthora spp.: a comprehensive analysis of the gene complement coding for carbohydrate active enzymes in species of the genus Phytophthora[J]. BMC Genom,2010,11:525.
[36] ELLWOOD S R,LIU Z H,SYME R A,et al. A first genome assembly of the barley fungal pathogen pyrenophora teres f. teres[J]. Genome Biol,2010,11(11):R109.
[37] OLIVER R P,IPCHO S V S. Arabidosis pathology breathes new life into the necrotrophs-vs.-biotrophs classification of fungal pathogens[J].Molecul Plant Pathol,2004,5(4):347-352.
[38] LEVESQUE C A,BROUWER H,CANO L,et al. Genome sequence of the necrotrophic plant pathogen Pythium ultimum reveals original pathogenicity mechanisms and effector repertoire[J]. Genom Biol,2010,11(7):R73.
[39] 田李,陈捷胤,陈相永,等. 大丽轮枝菌(Verticillium dahliae VdLs.17)分泌组预测及分析[J]. 中国农业科学,2011,44(15):3142-3153.

备注/Memo

备注/Memo:
收稿日期:2023-09-06;修回日期:2023-12-13
基金项目:浙江省重点研发项目(2019C02024)
作者简介:吴怡豪,硕士研究生,从事森林保护学研究;E-mail:1505817181@qq.com。通信作者:苏秀,副教授,博士,从事林木病理学 研究;E-mail: suxiu@zafu.edu.cn。
更新日期/Last Update: 2024-02-20