[1]张鑫,吴刚.两种醉鱼草属植物根内真菌多样性和功能特征[J].浙江林业科技,2023,43(02):8-16.[doi:10.3969/j.issn.1001-3776.2023.02.002]
 ZHANG Xin,WU Gang.Diversity and Functional Properties of Fungi in Roots of Two Buddleja Species[J].Journal of Zhejiang Forestry Science and Technology,2023,43(02):8-16.[doi:10.3969/j.issn.1001-3776.2023.02.002]
点击复制

两种醉鱼草属植物根内真菌多样性和功能特征()
分享到:

《浙江林业科技》[ISSN:1001-3776/CN:33-1112/S]

卷:
43
期数:
2023年02期
页码:
8-16
栏目:
出版日期:
2023-03-20

文章信息/Info

Title:
Diversity and Functional Properties of Fungi in Roots of Two Buddleja Species
文章编号:
1001-3776(2023)02-0008-09
作者:
张鑫1吴刚2
(1. 云南林业职业技术学院,云南 昆明 650224;2. 中国科学院昆明植物研究所,云南 昆明 650201)
Author(s):
ZHANG Xin1WU Gang2
(1. Yunnan Forestry Technological College, Kunming 650224, China; 2. Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China)
关键词:
密蒙花白背枫醉鱼草属高通量测序根内真菌
Keywords:
Buddleja officinalis B. asiatica Buddleja high-throughput sequencing Fungi in Roots
分类号:
S154.3;Q949.32
DOI:
10.3969/j.issn.1001-3776.2023.02.002
文献标志码:
A
摘要:
为了解醉鱼草属Buddleja 广布物种的根内真菌多样性异同和功能特征,对密蒙花Buddleja officinalis 和白背 枫B. asiatica 的根内真菌进行了高通量测序和相关生物信息学分析。结果表明,从密蒙花和白背枫根内分别获得 429 和267 个真菌扩增子序列变异(amplicon sequence variants,ASVs)特征序列,但两者在α-多样性指数上无显 著性差异;通过物种注释发现,子囊菌门Ascomycota 和担子菌门Basidiomycota 物种均为两种植物根内真菌的主 要成分,但白背枫根系中担子菌门物种(主要为伞菌纲Agaricomycetes)明显占优势,可见它们在物种组成上有 明显差别;通过生态功能注释发现,密蒙花和白背枫根内分别有87 个真菌和94 个真菌ASVs 被注释到生态功能, 且共生(Symbiotroph)、腐生(Saprotroph)和寄生(Pathotroph)真菌均能在两种植物的根内被探测到,但类群 存在异同;共生菌方面,在两种植物根内均检测到外生菌根真菌类的蜡壳耳科Sebacinaceae 真菌,而丛枝菌根真菌 类的多孢囊霉目Diversisporales 仅见于密蒙花根内,丛枝菌根真菌类的球囊霉科Glomeraceae 物种仅见于白背枫根 内等。上述研究结果表明,密蒙花和白背枫在根内真菌多样性上无显著差异,但其根系对真菌的偏好性可能不同。
Abstract:
On July 11, 2021, lateral roots of Buddleja officinalis and B. asiatica were collected from a plot of 200 m×200 in Mile county, Yunnan province, and the ecological guilds of fungi in roots were analysed using high-throughput sequencing and bioinformatic analyses. The result demonstrated that 429 amplicon sequence variants (ASVs) were retrieved from B. officinalis and 267 ones from B. asiatica, but it had no significant difference of fungal α-diversity between B. officinalis and B. asiatica. By taxonomic annotation, Ascomycota and Basidiomycota were the main components of the annotated mycorrhizal fungi of both B. officinalis and B. asiatica, but Basidiomycota (mainly Agaricomycetes) had dominance in B. asiatica. Annotation of ecological guilds of fungi showed that 87 ASVs of fungi from B. officinalis and 94 ones from B. asiatica. Main guilds such as Symbiotroph, Saprotroph and Pathotroph were retrieved from roots of both plants. On symbiotroph, the ectomycorrhizal Sebacinaceae were detected in roots of both plants, while the arbuscular mycorrhizal Diversisporales only found in B. officinalis, and the arbuscular mycorrhizal Glomeraceae only in B. asiatica.

参考文献/References:

[1] OXELMAN B,KORNHALL P,OLMSTEAD R,et al. Further disintegration of Scrophulariaceae [J]. Taxon,2005,54(2):411-425.
[2] CHAU J H,O’LEARY N,SUN W-B,et al. Phylogenetic relationships in tribe Buddlejeae (Scrophulariaceae) based on multiple nuclear and plastid markers [J]. Botanical journal of the Linnean Society,2017,184(2):137-166.
[3] 张美珍,缪柏茂,陆瑞林,等. 中国植物志:第61 卷 木犀科 马钱科[M]. 北京:科学技术出版社,1992:309.
[4] TRIVEDI P,LEACH J E,TRINGE S G,et al. Plant-microbiome interactions: from community assembly to plant health[J]. Nat Rev Microbiol, 2020,18(11):607-621.
[5] GARRIDO-OTER R,NAKANO R T,DOMBROWSKI N,et al. Modular traits of the Rhizobiales root microbiota and their evolutionary relationship with symbiotic Rhizobia[J]. Cell Host Microb,2018,24(1):155-167.
[6] JIANG Y,WANG W,XIE Q,et al. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science,2017,356(6343):1172-1175.
[7] 刘润进,唐明,陈应龙. 菌根真菌与植物抗逆性研究进展 [J]. 菌物研究,2017,15(1):70-88.
[8] 欧静,何跃军,刘仁阳,等. 杜鹃花类菌根真菌对桃叶杜鹃幼苗光合性能及叶绿素荧光参数的影响[J]. 微生物学通报,2013,40(8):1423-1436.
[9] 黄艺,姜学艳,梁振春,等. 外生菌根真菌接种和施磷对油松苗抗盐性的影响[J]. 生态环境,2004,13(4):622-625,640.
[10] 梁宇,郭良栋,马克平. 菌根真菌在生态系统中的作用[J]. 植物生态学报,2002,26(6):739-745.
[11] BEGUM N,QIN C,AHANGER M A,et al. Role of arbuscular mycorrhizal fungi in plant growth regulation: Implications in abiotic stress tolerance[J]. Front Plant Sci,2019,10:1068.
[12] DICKIE I A,THOMAS M M,BELLINGHAM P J. On the perils of mycorrhizal status lists: the case of Buddleja davidii[J]. Mycorrhiza,2007,17(8):687-688.
[13] LEEUWENBERG A J M. The Loganiaceae of Africa XVIII. Buddleja L. II. Revision of the African and Asiatic species[J]. Mededel Landbouwhogeschool Wageningen,1979,79:1-163
[14] 李建平,李涛,赵之伟. 金沙江干热河谷(元谋段)丛枝菌根真菌多样性研究[J]. 菌物学报,2003,22(004):604-612.
[15] 许美玲,孙军德,朱教君,等. 树木外生菌根真菌多样性研究方法进展[J]. 土壤通报,2005,36(6):969-974.
[16] 刘敏,峥嵘,白淑兰,等. 丛枝菌根真菌物种多样性研究进展[J]. 微生物学通报,2016,43(8):1836-1843.
[17] 耿荣,耿增超,黄建,等. 秦岭辛家山林区锐齿栎外生菌根真菌多样性[J]. 菌物学报,2016,35(7):833-847.
[18] BJORB?KMO M F M,CARLSEN T,BRYSTING A,et al.. High diversity of root associated fungi in both alpine and arctic Dryas octopetala[J].BMC Plant Biol,2010,10(1):244.
[19] 熊丹,欧静,李林盼,等. 黔中地区马尾松林下杜鹃根部内生真菌群落组成及其生态功能分析[J]. 生态学报,2020,40(4):1228-1239.
[20] 杨岳,闫伟,魏杰. 内蒙古地区白桦根围土壤外生菌根真菌群落结构[J]. 菌物学报,2018,37(3):294-304.
[21] HIGO M,TATEWAKI Y,IIDA K,et al. Amplicon sequencing analysis of arbuscular mycorrhizal fungal communities colonizing maize roots in different cover cropping and tillage systems[J]. Sci Rep,2020,10(1):6039.
[22] AL-SADI A M,KAZEROONI E A. Illumina-MiSeq analysis of fungi in acid lime roots reveals dominance of Fusarium and variation in fungal taxa[J]. Sci Rep,2018,8(1):17388.
[23] 宁祎,李艳玲,周国英,等. 青海上北山林场野生桃儿七根部内生真菌群落组成及多样性研究[J]. 中国中药杂志,2016,41(7):1227-1234.
[24] 朱琳,黄建,陈天阳,等. 文冠果人工林根际土壤真菌和根系内生真菌群落多样性[J]. 东北林业大学学报,2015,43(5):105-111.
[25] BOLYEN E,RIDEOUT J R,DILLON M R,et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2 [J].Nat Biotechnol,2019,37(8):852-857.
[26] MARTIN M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. EMBnet J,2011,17(1):10-12.
[27] CALLAHAN B J,MCMURDIE P J,ROSEN M J,et al. DADA2: High-resolution sample inference from Illumina amplicon data[J]. Nat Meth,2016,13(7):581-583.
[28] KEMP P F,ALLER J Y. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us[J]. FEMS Microbiol Ecol,2004,47(2):161-177.
[29] SHANNON C E. A mathematical theory of communication[J]. Bell Syst Tech J,1948,27(3):379-423.
[30] SIMPSON E H. Measurement of diversity[J]. Nature,1949,163:688.
[31] CHAO A. Non-parametric estimation of the classes in a population[J]. Scandinav J Statist,1984,11(4):265-270.
[32] GNERRE S,MACCALLUM I,PRZYBYLSKI D,et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data[J]. Proc Nat Acad Sci,2011,108(4):1513.
[33] LEX A,GEHLENBORG N,STROBELT H,et al. UpSet: Visualization of intersecting sets[J]. IEEE Transact Vis Comput Graph,2014,20(12):1983-1992.
[34] K?LJALG U,NILSSON R H,ABARENKOV K,et al. Towards a unified paradigm for sequence-based identification of fungi[J]. Molec Ecol,2013,22(21):5271-5277.
[35] NGUYEN N H,SONG Z,BATES S T,et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild [J].Fung Ecol,2016,20:241-248.
[36] QIN Y,PAN X,KUBICEK C,et al. Diverse plant-associated pleosporalean fungi from saline areas: Ecological tolerance and nitrogen-status dependent effects on plant growth[J]. Front Microbiol,2017,8:158.
[37] MARTIN F,KOHLER A,MURAT C,et al. Unearthing the roots of ectomycorrhizal symbioses[J]. Nat Rev Microbiol,2016,14(12):760-773.
[38] SURYANARAYANAN T S,SHAANKER R U. Can fungal endophytes fast-track plant adaptations to climate change? [J]. Fungal Ecology,2021,50:101039.
[39] 王珊,魏杰,杨岳,等. 不同衰退等级蒙古沙冬青根内真菌多样性与群落结构[J]. 菌物学报,2018,37(4):411-421.
[40] 周婕,苗一方,方楷,等. 紫茎泽兰内生真菌及其根际土壤真菌的多样性研究[J]. 生态科学,2019,38(5):1-7.
[41] KALDORF M,KOCH B,REXER K-H,et al. Patterns of interaction between Populus Esch5 and Piriformospora indica: A transition from mutualism to antagonism[J]. Plant Biol,2005,7(2):210-218.
[42] SHERAMETI I,SHAHOLLARI B,VENUS Y,et al. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters[J]. J Biol Chem,2005,280(28):26241-26247.
[43] 毛琳琳,朱志炎,何勇,等. 印度梨形孢(Piriformospora indica)与植物互作研究综述[J]. 安徽农学通报,2016,22(11):47-50,99.
[44] 朱教君,徐慧,许美玲,等. 外生菌根菌与森林树木的相互关系 [J]. 生态学杂志,2003,22(6):70-76.
[45] ZHANG Y,LI Y,GUO S. Effects of the mycorrhizal fungus Ceratobasidium sp. AR2 on growth and flavonoid accumulation in Anoectochilus roxburghii[J]. Peer J,2020,8(2):e8346.
[46] 李亮,武洪庆,马朝阳,等. 印度梨形孢促进蒺藜苜蓿生长及其提高耐盐性研究[J]. 微生物学通报,2015,42(8):1492-1500.
[47] VARMA A,SHERAMETI I,TRIPATHI S,et al. The symbiotic fungus Piriformospora indica: Review[M]//Hock B. Fungal Associations.Berlin,Heidelberg;Springer Berlin Heidelberg, 2012:231-254.
[48] WU Q S,XIA R X. Arbuscular mycorrhizal fungi influence growth, osmotic adjustment and photosynthesis of citrus under well-watered and water stress conditions[J]. J Plant Physiol,2006,163(4):417-425.
[49] PUTTARADDER J,LAKSHMAN H C. Effect of different AM Fungi inoculation on growth, biomass, yield enhancement and nutrient uptake in cultivar Sankeshwar of Capsicum annuum L.[J]. Int J Eng App Sci,2016,3(12):74-79.
[50] 王敏强,吴沛鸿,沈益康,等. 盐胁迫下接种丛枝菌根真菌对甜菊生长和氮磷吸收的影响[J]. 应用与环境生物学报,2018,24(5):960-966.

备注/Memo

备注/Memo:
收稿日期:2022-10-01;修回日期:2023-01-14
基金项目:云南林业职业技术学院博士基金(KY(BS)201801)
作者简介:张鑫,副教授,博士,从事植物保护生物学研究工作;E-mail: 362005738@qq.com。通信作者:吴刚,副研究员,博士,从事真菌多样性与进化研究工作;E-mail: wugang@mail.kib.ac.cn。
更新日期/Last Update: 2023-03-20